Multihierarchical Regulation to Achieve Quantum Dot Nanospheres with a Photoluminescence Quantum Yield Close to 100%

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)

引用 0|浏览2
摘要
Quantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity. However, the photoluminescence quantum yield (PLQY) of FNs is significantly lower compared with that of original QDs. It is urgent to develop a strategy to solve the issue, aiming to further enhance detection sensitivity. In this study, we found that the decrease of PLQY of FNs prepared by free radical polymerization was attributed to two factors: (1) generation of defects that can cause nonradiative transitions resulting from QD-ligands desorption and QD-shell oxidation induced by free radicals; (2) self-absorption resulting from aggregation caused by incompatibility of QDs with polymers. Based on these, we proposed a multihierarchical regulation strategy that includes: (1) regulating QD-ligands; (2) precisely controlling free radical concentration; and (3) constructing cross-linked structures of polymer to improve compatibility and to reduce the formation of surface defects. It is crucial to emphasize that the simultaneous coordination of multiple factors is essential. Consequently, a world-record PLQY of 97.6% for FNs was achieved, breaking through the current bottleneck at 65%. The flexible application of this regulatory concept paves the way for the large-scale production of high-brightness QD-polymer complexes, enhancing their potential applications in sensitive biomedical detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn