Iterative Regularized Policy Optimization with Imperfect Demonstrations
ICML 2024(2024)
摘要
Imitation learning heavily relies on the quality of provided demonstrations. In scenarios where demonstrations are imperfect and rare, a prevalent approach for refining policies is through online fine-tuning with reinforcement learning, in which a Kullback–Leibler (KL) regularization is often employed to stabilize the learning process. However, our investigation reveals that on the one hand, imperfect demonstrations can bias the online learning process, the KL regularization will further constrain the improvement of online policy exploration. To address the above issues, we propose Iterative Regularized Policy Optimization (IRPO), a framework that involves iterative offline imitation learning and online reinforcement exploration. Specifically, the policy learned online is used to serve as the demonstrator for successive learning iterations, with a demonstration boosting to consistently enhance the quality of demonstrations. Experimental validations conducted across widely used benchmarks and a novel fixed-wing UAV control task consistently demonstrate the effectiveness of IRPO in improving both the demonstration quality and the policy performance. Our code is available at https://github.com/GongXudong/IRPO.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn