Analysis of Factors That Indicated Surgery in 400 Patients Submitted to a Complete Diagnostic Workup for Obstructed Defecation Syndrome and Rectal Prolapse Using a Supervised Machine Learning Algorithm

TECHNIQUES IN COLOPROCTOLOGY(2024)

引用 0|浏览2
摘要
Patient selection is extremely important in obstructed defecation syndrome (ODS) and rectal prolapse (RP) surgery. This study assessed factors that guided the indications for ODS and RP surgery and their specific role in our decision-making process using a machine learning approach. This is a retrospective analysis of a long-term prospective observational study on female patients reporting symptoms of ODS who underwent a complete diagnostic workup from January 2010 to December 2021 at an academic tertiary referral center. Clinical, defecographic, and other functional tests data were assessed. A supervised machine learning algorithm using a classification tree model was performed and tested. A total of 400 patients were included. The factors associated with a significantly higher probability of undergoing surgery were follows: as symptoms, perineal splinting, anal or vaginal self-digitations, sensation of external RP, episodes of fecal incontinence and soiling; as physical examination features, evidence of internal and external RP, rectocele, enterocele, or anterior/middle pelvic organs prolapse; as defecographic findings, intra-anal and external RP, rectocele, incomplete rectocele emptying, enterocele, cystocele, and colpo-hysterocele. Surgery was less indicated in patients with dyssynergia, severe anxiety and depression. All these factors were included in a supervised machine learning algorithm. The model showed high accuracy on the test dataset (79
更多
查看译文
关键词
Obstructed defecation,Rectal prolapse,Indication for surgery,Defecography,Anorectal manometry,Machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn