Improving Postsurgical Fall Detection for Older Americans Using LLM-driven Analysis of Clinical Narratives

medRxiv the preprint server for health sciences(2024)

引用 0|浏览1
摘要
Postsurgical falls have significant patient and societal implications but remain challenging to identify and track. Detecting postsurgical falls is crucial to improve patient care for older adults and reduce healthcare costs. Large language models (LLMs) offer a promising solution for reliable and automated fall detection using unstructured data in clinical notes. We tested several LLM prompting approaches to postsurgical fall detection in two different healthcare systems with three open-source LLMs. The Mixtral-8x7B zero-shot had the best performance at Stanford Health Care (PPV = 0.81, recall = 0.67) and the Veterans Health Administration (PPV = 0.93, recall = 0.94). These results demonstrate that LLMs can detect falls with little to no guidance and lay groundwork for applications of LLMs in fall prediction and prevention across many different settings.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn