Discovery of Oxidized P-Terphenyls As Phosphodiesterase 4 Inhibitors from Marine-Derived Fungi

JOURNAL OF NATURAL PRODUCTS(2024)

引用 0|浏览14
摘要
Four new p-terphenyl derivatives, talaroterphenyls A-D (1-4), together with three biosynthetically related known ones (5-7), were obtained from the mangrove sediment-derived Talaromyces sp. SCSIO 41412. Compounds 1-3 are rare p-terphenyls, which are completely substituted on the central benzene ring by oxygen atoms; this is the first report of their isolation from natural sources. Their structures were elucidated through NMR spectroscopy, HRESIMS, and X-ray diffraction. Genome sequence analysis revealed that 1-7 were biosynthesized from tyrosine and phenylalanine, involving four key biosynthetic genes (ttpB-ttpE). These p-terphenyls (1-7) and 36 marine-derived terphenyl analogues (8-43) were screened for phosphodiesterase 4 (PDE4) inhibitory activities, and 1-5, 14, 17, 23, and 26 showed notable activities with IC50 values of 0.40-16 mu M. The binding pattern of p-terphenyl inhibitors 1-3 with PDE4 were explored by molecular docking analysis. Talaroterphenyl A (1), with a low cytotoxicity, showed obvious anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, in the TGF-beta 1-induced medical research council cell strain-5 (MRC-5) pulmonary fibrosis model, 1 could down-regulate the expression levels of FN1, COL1, and alpha-SMA significantly at concentrations of 5-20 mu M. This study suggests that the oxidized p-terphenyl 1, as a marine-derived PDE4 inhibitor, could be used as a promising antifibrotic agent.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn