Clonal Spread of Blandm-1-carrying Salmonella Enterica Serovar Typhimurium Clone ST34 and Wide Spread of IncHI2/ST3-blaNDM-5 Plasmid in China.

JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY(2024)

引用 0|浏览4
摘要
OBJECTIVES:To characterize blaNDM-carrying Salmonella recovered from a pig slaughterhouse. METHODS:In this study, 46 environment samples were collected from a slaughterhouse in China, and screened for carbapenem-resistant Enterobacterales. WGS, antimicrobial susceptibility testing and conjugation experiments were carried out to identify the isolates' resistance phenotypes and genetic characteristics. The phylogenetic relatedness of the Salmonella isolates obtained in this study and Salmonella (ST34 and ST29) in GenBank was determined. RESULTS:Two ST34 Salmonella Typhimurium and one ST29 Salmonella Stanley, recovered from three environmental samples (6.52%), were positive for blaNDM-1 and blaNDM-5, respectively. The two ST34 S. Typhimurium strains exhibited a close relationship (10-36 SNPs) with two human-derived blaNDM-1-bearing isolates from China (Hong Kong and Guangxi Province) and two blaNDM-negative ST34 Salmonella strains from the UK. The blaNDM-1 genes were located on IncHI2/ST3 plasmids. The capture of blaNDM-1 by the IncHI2/ST3 plasmid seems to be due to homologous recombination mediated by circular structures, as the genetic arrangements of the blaNDM-1 gene contain two IS26 elements of the same orientation. The blaNDM-5 gene was also carried by the IncHI2/ST3 plasmid, which shares highly similar structures with other blaNDM-5-bearing IncHI2/ST3 plasmids from other sources (fish, chicken, duck, human). CONCLUSIONS:This is the first report of a blaNDM-5-carrying IncHI2/ST3 plasmid in Salmonella. The clonal spread of NDM-1-producing ST34 S. Typhimurium across human and animal-associated environments, and the widespread dissemination of epidemic blaNDM-5-carrying IncHI2/ST3 plasmids among Enterobacteriaceae in China indicate the potential of further dissemination of blaNDM among Salmonella, which poses a threat to public health.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn