Persistent Behavior in Solar Energetic Particle Time Series

N. V. Sarlis,G. Livadiotis,D. J. McComas大牛学者, M. E. Cuesta,L. Y. Khoo,C. M. S. Cohen,D. G. Mitchell大牛学者,N. A. Schwadron大牛学者

ASTROPHYSICAL JOURNAL(2024)

引用 0|浏览19
摘要
We investigate the long-term persistence of solar energetic particle (SEP) time series by means of four different methods: Hurst rescaled range R / S analysis, detrended fluctuation analysis, centered moving average analysis, and the fluctuation of natural time under the time reversal method. For these analyses, we use data sets from the Integrated Science Investigation of the Sun instrument suite on board NASA's Parker Solar Probe. Background systematic noise is modeled using cross-correlation analysis between different SEP energy channels and subtracted from the original data. The use of these four methods for deriving the time-series persistence allows us to (i) differentiate between quiet- and active-Sun periods based on the values of the corresponding self-similarity exponents alone; (ii) identify the onset of an ongoing activity well before it reaches its maximum SEP flux; (iii) reveal an interesting fine structure when activity is observed; and (iv) provide, for the first time, an estimate of the maximum SEP flux of a future storm based on the entropy change of natural time under time reversal.
更多
查看译文
关键词
Solar energetic particles,Solar wind,Astrostatistics,Time series analysis,Interdisciplinary astronomy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn