NK Cell Mitochondrial Membrane Potential-Associated Model Predicts Outcomes in Critically Ill Patients with COVID-19

JOURNAL OF INFLAMMATION RESEARCH(2024)

引用 0|浏览3
摘要
Purpose: This study investigated potential predictive models associated with natural killer (NK) cell mitochondrial membrane potential (MMP or Delta Psi m) in predicting death among critically ill patients with COVID-19. Patients and Methods: We included 97 patients with COVID-19 of different severities attending Peking Union Medical College Hospital from December 2022 to January 2023. Patients were divided into three groups according to oxygen and mechanical ventilation use during specimen collection and were followed for survival and death at 3 months. The lymphocyte subpopulation MMP was detected via flow cytometry. We constructed a joint diagnostic model by integrating identified key indicators and generating receiver operating curves (ROCs) and evaluated its predictive performance for mortality risk in critically ill patients. Results: The NK-cell MMP median fluorescence intensity (MFI) was significantly lower in critically ill patients who died from COVID-19 (p<0.0001) and significantly and positively correlated with D-dimer content in critically ill patients (r=0.56, p=0.0023). The random forest model suggested that fibrinogen levels and NK-cell MMP MFI were the most important indicators. Integrating the above predictive models for the ROC yielded an area under the curve of 0.94. Conclusion: This study revealed the potential of combining NK-cell MMP with key clinical indicators (D-dimer and fibrinogen levels) to predict death among critically ill patients with COVID-19, which may help in early risk stratification of critically ill patients and improve patient care and clinical outcomes.
更多
查看译文
关键词
COVID-19,mortality prediction,NK cell,mitochondrial membrane potential,fibrinogen,D-dimer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn