A Powerful Machine Learning Approach to Identify Interactions of Differentially Abundant Gut Microbial Subsets in Patients with Metastatic and Non-Metastatic Pancreatic Cancer

GUT MICROBES(2024)

引用 0|浏览17
摘要
Pancreatic cancer has a dismal prognosis, as it is often diagnosed at stage IV of the disease and is characterized by metastatic spread. Gut microbiota and its metabolites have been suggested to influence the metastatic spread by modulating the host immune system or by promoting angiogenesis. To date, the gut microbial profiles of metastatic and non-metastatic patients need to be explored. Taking advantage of the 16S metagenomic sequencing and the PEnalized LOgistic Regression Analysis (PELORA) we identified clusters of bacteria with differential abundances between metastatic and non-metastatic patients. An overall increase in Gram-negative bacteria in metastatic patients compared to non-metastatic ones was identified using this method. Furthermore, to gain more insight into how gut microbes can predict metastases, a machine learning approach (iterative Random Forest) was performed. Iterative Random Forest analysis revealed which microorganisms were characterized by a different level of relative abundance between metastatic and non-metastatic patients and established a functional relationship between the relative abundance and the probability of having metastases. At the species level, the following bacteria were found to have the highest discriminatory power: Anaerostipes hadrus, Coprobacter secundus, Clostridium sp. 619, Roseburia inulinivorans, Porphyromonas and Odoribacter at the genus level, and Rhodospirillaceae, Clostridiaceae and Peptococcaceae at the family level. Finally, these data were intertwined with those from a metabolomics analysis on fecal samples of patients with or without metastasis to better understand the role of gut microbiota in the metastatic process. Artificial intelligence has been applied in different areas of the medical field. Translating its application in the field of gut microbiota analysis may help fully exploit the potential information contained in such a large amount of data aiming to open up new supportive areas of intervention in the management of cancer.
更多
查看译文
关键词
Microbiota,machine learning,pancreatic cancer,metastasis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn