Circularly Polarized Photon Emission from Magnetized Chiral Plasmas

Physical Review D(2024)

引用 0|浏览0
摘要
We investigate the emission of circularly polarized photons from a magnetized quark-gluon plasma with nonzero quark-number and chiral charge chemical potentials. These chemical potentials qualitatively influence the differential emission rates of circularly polarized photons. A nonzero net electric charge density, induced by quark-number chemical potentials, enhances the overall emission of one circular polarization over the other, while a nonzero chiral charge density introduces a spatial asymmetry in the emission with respect to reflection in the transverse plane. The signs of the electrical and chiral charge densities determine which circular polarization dominates overall and whether the emission preferentially aligns with or opposes the magnetic field. Based on these findings, we propose that polarized photon emission is a promising observable for characterizing the quark-gluon plasma produced in heavy-ion collisions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn