Determining Sample Size in a Personalized Randomized Controlled (practical) Trial
Statistics in Medicine(2024)
摘要
In clinical settings with no commonly accepted standard-of-care, multiple treatment regimens are potentially useful, but some treatments may not be appropriate for some patients. A personalized randomized controlled trial (PRACTical) design has been proposed for this setting. For a network of treatments, each patient is randomized only among treatments which are appropriate for them. The aim is to produce treatment rankings that can inform clinical decisions about treatment choices for individual patients. Here we propose methods for determining sample size in a PRACTical design, since standard power-based methods are not applicable. We derive a sample size by evaluating information gained from trials of varying sizes. For a binary outcome, we quantify how many adverse outcomes would be prevented by choosing the top-ranked treatment for each patient based on trial results rather than choosing a random treatment from the appropriate personalized randomization list. In simulations, we evaluate three performance measures: mean reduction in adverse outcomes using sample information, proportion of simulated patients for whom the top-ranked treatment performed as well or almost as well as the best appropriate treatment, and proportion of simulated trials in which the top-ranked treatment performed better than a randomly chosen treatment. We apply the methods to a trial evaluating eight different combination antibiotic regimens for neonatal sepsis (NeoSep1), in which a PRACTical design addresses varying patterns of antibiotic choice based on disease characteristics and resistance. Our proposed approach produces results that are more relevant to complex decision making by clinicians and policy makers.
更多查看译文
关键词
clinical trials,multiple treatments,personalized randomization,sample size,trial design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn