Human Fibroblasts from Sporadic Alzheimer's Disease (AD) Patients Show Mitochondrial Alterations and Lysosome Dysfunction.
FREE RADICAL BIOLOGY AND MEDICINE(2024)
摘要
Mitophagy is a mechanism that maintains mitochondrial integrity and homeostasis and is thought to promote longevity and reduce the risk of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Here, we investigate the abundance of mitochondrial reactive oxygen species (ROS), mitochondrial function, and mitophagy in primary fibroblasts from patients with sporadic AD (sAD) and normal healthy controls. The results show increased levels of mitochondrial ROS, changes in mitochondrial morphology, altered bioenergetic properties, and defects in autophagy, mitophagy, and lysosome-mediated degradation pathways in sAD fibroblasts relative to control fibroblasts. Interestingly, lysosome abundance and the staining of lysosomal markers remained high, while the capacity of lysosome-dependent degradation was lower in sAD fibroblasts than in controls fibroblasts. Nicotinamide riboside supplementation decreased mitochondrial ROS, while capacity for lysosomal degradation remained unchanged in sAD fibroblasts relative to healthy control fibroblasts. These findings provide insight into molecular mechanisms involving the dysregulation of lysosome and autophagy/mitophagy pathways that may contribute significantly to clinical signs and pathological features of sAD.
更多查看译文
关键词
Alzheimer's disease,Mitophagy,Autophagy,Lysosome,Oxidative stress,Mitochondria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn