Machine-Learning for Phenotyping and Prognostication of Myocardial Infarction and Injury in Suspected Acute Coronary Syndrome
JACC Advances(2024)
摘要
Background Clinical work-up for suspected acute coronary syndrome (ACS) is resource intensive. Objectives This study aimed to develop a machine learning model for digitally phenotyping myocardial injury and infarction and predict 30-day events in suspected ACS patients. Methods Training and testing data sets, predominantly derived from electronic health records, included suspected ACS patients presenting to 6 and 26 South Australian hospitals, respectively. All index presentations and 30-day death and myocardial infarction (MI) were adjudicated using the Fourth Universal Definition of MI. We developed two diagnostic prediction models which phenotype myocardial injury and infarction according to the Fourth UDMI (chronic myocardial injury vs acute myocardial injury patterns, the latter further differentiated into acute non-ischaemic myocardial injury, Types 1 and 2 MI) using eXtreme Gradient Boosting (XGB) and deep-learning (DL). We also developed an event prediction model for risk prediction of 30-day death or MI using XGB. Analyses were performed in Python 3.6. Results The training and testing data sets had 6,722 and 8,869 participants, respectively. The diagnostic prediction XGB and deep learning models achieved an area under the curve of 99.2% ± 0.1% and 98.8% ± 0.2%, respectively, for differentiating an acute myocardial injury pattern from no injury or chronic myocardial injury pattern and achieved 95.5% ± 0.2% and 94.6% ± 0.9%, respectively, for differentiating type 1 MI from type 2 MI or acute nonischemic myocardial injury. The 30-day death/MI event prediction model achieved an area under the curve of 88.5% ± 0.5%. Conclusions Machine learning models can digitally phenotype suspected ACS patients at index presentation and predict subsequent events within 30 days. These models require external validation in a randomized clinical trial to evaluate their impact in clinical practice.
更多查看译文
关键词
artificial intelligence,machine learning,myocardial infarction,myocardial injury,troponin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn