Parameter Identification of Electrical and Thermal Model of a Lithium Polymer Battery Using Particle Swarm Optimization
2024 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS SYSTEMS AND APPLICATIONS, PESA 2024(2024)
摘要
Due to the complexity of Lithium Polymer (LiP) battery behaviors, the traditional identification methods suffer from the low accuracy. To address this issue, the particle swarm optimization (PSO) algorithm is proposed to estimate the electrical and thermal models of LiP batteries. By incorporating the PSO algorithm into the parameter estimation process, experimental data can be used for iterative comparison and adjustment of identified parameters to improve accuracy. The results in Section IV indicate that the dynamic curve of the battery identified by the PSO algorithm fits well with the actual test waveform. Thus, the effectiveness of this PSO algorithm in improving the accuracy of battery model parameter recognition is verified.
更多查看译文
关键词
Lithium polymer batteries,Battery Modeling,Thermal-Electrical Model,particle swarm optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn