Essential gene screening identifies the bromodomain-containing protein BRPF1 as a new actionable target for endocrine therapy-resistant breast cancers

Molecular Cancer(2024)

引用 0|浏览3
摘要
Identifying master epigenetic factors controlling proliferation and survival of cancer cells allows to discover new molecular targets exploitable to overcome resistance to current pharmacological regimens. In breast cancer (BC), resistance to endocrine therapy (ET) arises from aberrant Estrogen Receptor alpha (ERα) signaling caused by genetic and epigenetic events still mainly unknown. Targeting key upstream components of the ERα pathway provides a way to interfere with estrogen signaling in cancer cells independently from any other downstream event. By combining computational analysis of genome-wide ‘drop-out’ screenings with siRNA-mediated gene knock-down (kd), we identified a set of essential genes in luminal-like, ERα + BC that includes BRPF1, encoding a bromodomain-containing protein belonging to a family of epigenetic readers that act as chromatin remodelers to control gene transcription. To gather mechanistic insights into the role of BRPF1 in BC and ERα signaling, we applied chromatin and transcriptome profiling, gene ablation and targeted pharmacological inhibition coupled to cellular and functional assays. Results indicate that BRPF1 associates with ERα onto BC cell chromatin and its blockade inhibits cell cycle progression, reduces cell proliferation and mediates transcriptome changes through the modulation of chromatin accessibility. This effect is elicited by a widespread inhibition of estrogen signaling, consequent to ERα gene silencing, in antiestrogen (AE) -sensitive and -resistant BC cells and pre-clinical patient-derived models (PDOs). Characterization of the functional interplay of BRPF1 with ERα reveals a new regulator of estrogen-responsive BC cell survival and suggests that this epigenetic factor is a potential new target for treatment of these tumors.
更多
查看译文
关键词
Breast cancer,Estrogen signaling,BRPF1,Endocrine therapy resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn