Fast John Ellipsoid Computation with Differential Privacy Optimization
CoRR(2024)
摘要
Determining the John ellipsoid - the largest volume ellipsoid contained within a convex polytope - is a fundamental problem with applications in machine learning, optimization, and data analytics. Recent work has developed fast algorithms for approximating the John ellipsoid using sketching and leverage score sampling techniques. However, these algorithms do not provide privacy guarantees for sensitive input data. In this paper, we present the first differentially private algorithm for fast John ellipsoid computation. Our method integrates noise perturbation with sketching and leverage score sampling to achieve both efficiency and privacy. We prove that (1) our algorithm provides $(\epsilon,\delta)$-differential privacy, and the privacy guarantee holds for neighboring datasets that are $\epsilon_0$-close, allowing flexibility in the privacy definition; (2) our algorithm still converges to a $(1+\xi)$-approximation of the optimal John ellipsoid in $O(\xi^{-2}(\log(n/\delta_0) + (L\epsilon_0)^{-2}))$ iterations where $n$ is the number of data point, $L$ is the Lipschitz constant, $\delta_0$ is the failure probability, and $\epsilon_0$ is the closeness of neighboring input datasets. Our theoretical analysis demonstrates the algorithm's convergence and privacy properties, providing a robust approach for balancing utility and privacy in John ellipsoid computation. This is the first differentially private algorithm for fast John ellipsoid computation, opening avenues for future research in privacy-preserving optimization techniques.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn