Establishment, Prediction, and Validation of a Nomogram for Cognitive Impairment in Elderly Patients with Diabetes
JOURNAL OF DIABETES RESEARCH(2024)
摘要
Objective: The purpose of this study is to establish a predictive model of cognitive impairment in elderly people with diabetes.Methods: We analyzed a total of 878 elderly patients with diabetes who were part of the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014. The data were randomly divided into training and validation cohorts at a ratio of 6:4. The least absolute shrinkage and selection operator (LASSO) logistic regression analysis to identify independent risk factors and construct a prediction nomogram for cognitive impairment. The performance of the nomogram was assessed using receiver operating characteristic (ROC) curve and calibration curve. Decision curve analysis (DCA) was performed to evaluate the clinical utility of the nomogram.Results: LASSO logistic regression was used to screen eight variables, age, race, education, poverty income ratio (PIR), aspartate aminotransferase (AST), blood urea nitrogen (BUN), serum uric acid (SUA), and heart failure (HF). A nomogram model was built based on these predictors. The ROC analysis of our training set yielded an area under the curve (AUC) of 0.786, while the validation set showed an AUC of 0.777. The calibration curve demonstrated a good fit between the two groups. Furthermore, the DCA indicated that the model has a favorable net benefit when the risk threshold exceeds 0.2.Conclusion: The newly developed nomogram has proved to be an important tool for accurately predicting cognitive impairment in elderly patients with diabetes, providing important information for targeted prevention and intervention measures.
更多查看译文
关键词
cognitive impairment,diabetes,prediction model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn