Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study
VETERINARY SCIENCES(2024)
摘要
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs’ unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
更多查看译文
关键词
bone marrow-derived canine mesenchymal stem cells,diabetes mellitus,dog,insulin-producing cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn