Exploring the Impact of Lipid Nanoparticles on Protein Stability and Cellular Proteostasis
Journal of Colloid and Interface Science(2024)
摘要
Lipid nanoparticles (LNPs) have become pivotal in advancing modern medicine, from mRNA-based vaccines to gene editing with CRISPR-Cas9 systems. Though LNPs based therapeutics offer promising drug delivery with satisfactory clinical safety profiles, concerns are raised regarding their potential nanotoxicity. Here, we explore the impacts of LNPs on protein stability in buffer and cellular protein homeostasis (proteostasis) in HepG2 cells. First, we show that LNPs of different polyethylene glycol (PEG) molar ratios to total lipid ratio boost protein aggregation propensity by reducing protein stability in cell lysate and blood plasma. Second, in HepG2 liver cells, these LNPs induce global proteome aggregation, as imaged by a cellular protein aggregation fluorescent dye (AggStain). Such LNPs induced proteome aggregation is accompanied by decrease in cellular micro-environmental polarity as quantified by a solvatochromic protein aggregation sensor (AggRetina). The observed local polarity fluctuations may be caused by the hydrophobic contents of LNPs that promote cellular proteome aggregation. Finally, we exploit RNA sequencing analysis (RNA-Seq) to reveal activation of unfolded protein response (UPR) pathway and other proteostasis genes upon LNPs treatment. Together, these findings highlight that LNPs may induce subtle proteome stress by compromising protein stability and proteostasis even without obvious damage to cell viability.
更多查看译文
关键词
Lipid nanoparticles (LNPs),Nanotoxicity,Protein stability,Protein aggregation,Cellular homeostasis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn