Maternal Dnd1 is Essential for Migration and Maintenance of PGCs in Nile Tilapia at Larval Stage
Aquaculture Reports(2024)
摘要
As a germ-cell-specific maternal mRNA and RNA binding protein, dead end (dnd1) plays an important role in migration and maintenance of primordial germ cells (PGCs), and therefore, disruption of dnd1 results in no germ cells. However, the effect and duration of maternal dnd1 on PGCs in zygote mutants have not been reported yet. In the present study, CRISPR/Cas9 was used to mutate dnd1 in tilapia. Supported by the maternal dnd1 mRNA, germ cells of the dnd1 homozygous mutants proliferated and migrated normally before 7 dpf (days post fertilization). After the degradation of maternal dnd1 mRNA, significant downregulation of piwil1, piwil2, nanos2, nanos3 and vasa mRNA, and blocked migration of germ cells were observed at 14 dpf. In dnd1 zygote mutants, the number of germ cells was decreased significantly compared with wild type (WT) at 25 dpf, and no germ cell was observed at 30 dpf. Consistently, no expression of vasa and nanos3 was detected in the adult dnd1 mutants by qPCR. Interestingly, Cyp19a1a/cyp19a1a and foxl2 were expressed in dnd1-deficient XX gonads, while Cyp11c1/cyp11c1 and dmrt1 were expressed in dnd1-deficient XY gonads as in WT gonads. Correspondingly, both serum E2 level in XX and 11-KT level in XY fish did not differ significantly between dnd1 mutant and WT fish. Taken together, the present study demonstrates that disruption of dnd1 lead to progressive loss of germ cells, while the somatic cells are not affected in tilapia. The sexual fate of gonads is determined by the genetic sex instead of germ cell number, which makes tilapia a potential surrogate model for germ cell transplantation.
更多查看译文
关键词
Nile tilapia,dnd1 mutation,Maternal mRNA,Germ cell free,Somatic environment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn