Impacts of Climate Change and Best Management Practices on Nitrate Loading to a Eutrophic Coastal Lagoon
FRONTIERS IN ENVIRONMENTAL SCIENCE(2024)
摘要
Anthropogenic climate change and associated increasing nutrient loading to coasts will worsen coastal eutrophication on a global scale. Basin Head is a coastal lagoon located in northeastern Prince Edward Island, Canada, with a federally protected ecosystem. Nitrate-nitrogen (NO3-N) is conveyed from agricultural fields in the watershed to the eutrophic lagoon via intertidal groundwater springs and groundwater-dominated tributaries. A field program focused on four main tributaries that discharge into the lagoon was conducted to measure year-round NO3-N loading. These measurements were used to calibrate a SWAT+ hydrologic model capable of simulating hydrologic and NO3-N loads to the lagoon. Several climate change scenarios incorporating different agricultural best management practices (BMPs) were simulated to better understand potential future NO3-N loading dynamics. Results indicate that all climate change scenarios produced increased annual NO3-N loading to the lagoon when comparing historical (1990–2020) to end of century time periods (2070–2100); however, only one climate scenario (MRI-ESM2-0 SSP5-8.5) resulted in a statistically significant (p-value <0.05) increase. Enlarged buffer strips and delayed tillage BMP simulations produced small (0%–8%) effects on loading, while changing the crop rotation from potato-barley-clover to potato-soybean-barley yielded a small reduction in NO3-N loading between the historical period and the end of the century (26%–33%). Modeling revealed changes in seasonal loading dynamics under climate change where NO3-N loads remained more consistent throughout the year as opposed to current conditions where the dominant load is in the spring. An increase in baseflow contributions to streamflow was also noted under climate change, with the largest change occurring in the winter (e.g., up to a five-fold increase in February). These findings have direct implications for coastal management in groundwater-dominated agricultural watersheds in a changing climate.
更多查看译文
关键词
hydrologic model,SWAT+,climate change,best management practice,nitrate loading
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn