Potential Mechanism Prediction of Indole-3-propionic Acid Against Diminished Ovarian Reserve Via Network Pharmacology, Molecular Docking and Experimental Verification

BMC Complementary Medicine and Therapies(2024)

引用 0|浏览0
摘要
Oxidative stress (OS) is one of the major causes of ovarian aging and dysfunction. Indole-3-propionic acid (IPA) is an indole compound derived from tryptophan with free radical scavenging and antioxidant properties, and thus may have potential applications in protecting ovarian function, although the exact mechanisms are unknown. This study aims to preliminarily elucidate the potential mechanisms of IPA that benefit ovarian reserve function through network pharmacology, molecular docking, and experimental verification. The related protein targets of IPA were searched on SwissTargetPrediction, TargetNet, BATMAN-TCM, and PharmMapper databases. The potential targets of diminished ovarian reserve (DOR) were identified from OMIM, GeneCards, DrugBank, and DisGeNET databases. The common targets were uploaded directly to the STRING database to construct PPI networks. We then performed GO and KEGG enrichment analysis on the targets. Subsequently, molecular docking and molecular dynamics simulation were used to validate the binding conformation of IPA to candidate targets. Furthermore, we carried out in vitro experiments to validate the prediction results of network pharmacology. We identified a total of 61 potential targets for the interaction of IPA with DOR. The PPI network topological parameter analysis yielded 13 hub genes for DOR treatment. The GO biological process enrichment analysis identified 293 entries, mainly enriched in aging, signal transduction, response to hypoxia, negative regulation of apoptotic process, and positive regulation of cell proliferation. The KEGG enrichment analysis mainly included lipid and atherosclerosis, progesterone-mediated oocyte maturation, AGE-RAGE, relaxin, estrogen, and other signaling pathways. The molecular docking further revealed the direct binding of IPA with six hub proteins including NOS3, AKT1, EGFR, PPARA, SRC, and TNF. In vitro experiments showed that IPA pretreatment attenuated H2O2-induced cellular oxidative stress damage, while IPA exerted cytoprotective and antioxidant damage effects by regulating the six hub genes and antioxidant proteins. We systematically illustrated the potential protective effects of IPA against DOR through multiple targets and pathways using network pharmacology, and further verified the cytoprotective effect and antioxidant properties of IPA through in vitro experiments. These findings provide new insights into the targets and molecular mechanisms whereby IPA improves DOR.
更多
查看译文
关键词
Indole-3-propionic acid,Diminished ovarian reserve,Network pharmacology,Molecular docking,Molecular dynamics simulation,Experimental verification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn