Neural Shape Completion for Personalized Maxillofacial Surgery
SCIENTIFIC REPORTS(2024)
摘要
In this paper, we investigate the effectiveness of shape completion neural networks as clinical aids in maxillofacial surgery planning. We present a pipeline to apply shape completion networks to automatically reconstruct complete eumorphic 3D meshes starting from a partial input mesh, easily obtained from CT data routinely acquired for surgery planning. Most of the existing works introduced solutions to aid the design of implants for cranioplasty, i.e. all the defects are located in the neurocranium. In this work, we focus on reconstructing defects localized on both neurocranium and splanchnocranium. To this end, we introduce a new dataset, specifically designed for this task, derived from publicly available CT scans and subjected to a comprehensive pre-processing procedure. All the scans in the dataset have been manually cleaned and aligned to a common reference system. In addition, we devised a pre-processing stage to automatically extract point clouds from the scans and enrich them with virtual defects. We experimentally compare several state-of-the-art point cloud completion networks and identify the two most promising models. Finally, expert surgeons evaluated the best-performing network on a clinical case. Our results show how casting the creation of personalized implants as a problem of shape completion is a promising approach for automatizing this complex task.
更多查看译文
关键词
Shape completion,3D deep learning,Maxillofacial surgery,Surgery planning,Personalized medicine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn