Frontiers in High Entropy Alloys and High Entropy Functional Materials

Rare Metals(2024)

引用 0|浏览21
摘要
Owing to their exceptional properties, high-entropy alloys (HEAs) and high-entropy materials have emerged as promising research areas and shown diverse applications. Here, the recent advances in the field are comprehensively reviewed, organized into five sections. The first section introduces the background of HEAs, covering their definition, significance, application prospects, basic properties, design principles, and microstructure. The subsequent section focuses on cutting-edge high-entropy structural materials, highlighting developments such as nanostructured alloys, grain boundary engineering, eutectic systems, cryogenic alloys, thin films, micro-nano-lattice structures, additive manufacturing, high entropy metallic glasses, nano-precipitate strengthened alloys, composition modulation, alloy fibers, and refractory systems. In the following section, the emphasis shifts to functional materials, exploring HEAs as catalysts, magneto-caloric materials, corrosion-resistant alloys, radiation-resistant alloys, hydrogen storage systems, and materials for biomedicine. Additionally, the review encompasses functional high-entropy materials outside the realm of alloys, including thermoelectric, quantum dots, nanooxide catalysts, energy storage materials, negative thermal expansion ceramics, and high-entropy wave absorption materials. The paper concludes with an outlook, discussing future directions and potential growth areas in the field. Through this comprehensive review, researchers, engineers, and scientists may gain valuable insights into the recent progress and opportunities for further exploration in the exciting domains of high-entropy alloys and functional materials.
更多
查看译文
关键词
High entropy alloys,Cutting-edge structural materials,Cutting-edge functional materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn