Replication Kinetics and Infectivity of African Swine Fever Virus (ASFV) Variants with Different Genotypes or Levels of Virulence in Cell Culture Models of Primary Porcine Macrophages
MICROBIOLOGY RESEARCH(2024)
摘要
African Swine Fever (ASF) is a devastating viral hemorrhagic disease that causes high morbidity and mortality in domestic pigs and wild boars, severely impacting the swine industry. The etiologic agent, African Swine Fever virus (ASFV), mainly infects myeloid cells of the swine mononuclear phagocytic system (MPS). For other porcine viruses, in vitro culture models with primary cells are widely used as they mimic the in vivo viral replication behavior better compared to continuous cell lines. Our study validates this possible correlation for ASFV using cell culture models established for three different porcine macrophages, isolated from the lungs (porcine alveolar macrophages), blood (monocyte-derived macrophages) and spleen (spleen macrophages). The cells were infected with two genotype I and two genotype II strains with different pathogenic potential in vivo. The highly virulent strains replicated better in general than the low-virulent strains. This was most pronounced in monocyte-derived macrophages, although only statistically significant 18 h post-infection (hpi) in the intracellular genomic ASFV copies between E70 and the low-virulent strains. For this reason, we conclude that the different replication characteristics between the strains with different virulence do not proportionally represent the differences in pathology seen between the strains in vivo. Additionally, ASFV-positive cells were observed earlier in monocyte-derived macrophages (MDMs) compared to the alveolar and spleen macrophages, subsequently leading to an earlier rise in extracellular virus, and, ultimately, more MDMs were infected at the end of sampling. For these reasons, we propose MDMs as the best-suited cell type to study ASFV.
更多查看译文
关键词
ASFV,infectivity,replication kinetics,primary porcine macrophages,virulence,macrophage maturation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn