Shock-driven amorphization and melt in Fe_2O_3
arxiv(2024)
摘要
We present measurements on Fe_2O_3 amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved in situ x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a non-crystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(10) and 151(10) GPa, indicative of a phase change. Present DFT+U calculations of temperatures along Fe_2O_3 Hugoniot are in agreement with SESAME 7440 and indicate relatively low temperatures, below 2000 K, up to 150 GPa. The non-crystalline diffuse scattering is thus consistent with the - as yet unreported - shock amorphization of Fe_2O_3 between 122(3) and 145(10) GPa, followed by an amorphous-to-liquid transition above 151(10) GPa. Upon release, a non-crystalline phase is observed alongside crystalline α-Fe_2O_3. The extracted structure factor and pair distribution function of this release phase resemble those reported for Fe_2O_3 melt at ambient pressure.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn