Low Nitrogen Priming Enhances Rubisco Activation and Allocation of Nitrogen to the Photosynthetic Apparatus As an Adaptation to Nitrogen-Deficit Stress in Wheat Seedling

Journal of Plant Physiology(2024)

引用 0|浏览2
摘要
Reducing nitrogen (N) application is crucial in addressing the low N utilization efficiency (NUE) and the risks of environmental pollution in wheat production. Improving low N (LN) tolerance in wheat can help balance the conflict between wheat growth and reduced N fertilization. Hydroponic experiments were conducted using Yangmai158 (LN-tolerant) and Zaoyangmai (LN-sensitive) cultivars to study whether LN priming (LNP) in the 3-leaf stage can improve the photosynthetic capacity of wheat seedlings under N-deficit stress at the 5-leaf stage. LNP increased the net photosynthetic rate (Pn), stomatal conductance (Gs), electron transfer rate (ETR), carboxylation efficiency (CE), maximum carboxylation rate (Vcmax), and the content and activity of Rubisco and Rubisco activase (RCA) in both cultivars, with Yangmai158 showing a greater increase than Zaoyangmai. After 14 days of N-deficit stress, the decreases in Pn, Gs, ETR, CE, Vcmax, and the content and activity of Rubisco and RCA of the two cultivars treated with LNP were significantly lower compared with those of the treatments without LNP. LNP improved the allocation proportion of leaf N to photosynthetic machinery, with the greatest increase in the carboxylation machinery. These results indicate that LNP can allocate more N to the photosynthetic apparatus, improving Rubisco content and activity to enhance the photosynthetic capacity and NUE of leaves under N-deficit stress.
更多
查看译文
关键词
Wheat,Low nitrogen priming,Electron transport,Rubisco,Photosynthetic nitrogen allocation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn