A Model-Chain to Generate Q/V Band Attenuation Time Series from Short-Term Numerical Weather Predictions at Continental Scale
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION(2024)
摘要
To minimize the impact of propagation impairments occurring at Ka-band and beyond, satellite communication (SatCom) systems operating at such high frequencies require the implementation of adaptive fade mitigation techniques (FMTs). As beacon measurements are rarely available (especially with the spatial distribution and the time resolution required by FMTs), time-series generators represent a key tool for the design stage of such systems. This article proposes a novel three-module model chain to generate a time series of rain attenuation. The first module is a numerical weather prediction (NWP) model that forecasts meteorological parameters across a continental grid with 9x9 km and 15-min resolution in space and time, respectively. The NWP model outputs feed a radio propagation model, which produces time series of the attenuation components (gas, clouds, and rain). Finally, the rain attenuation is generated ex-novo at a 1-s sampling rate, by taking advantage of the multisite time-series synthesizer (MTS). Each step of the process is validated against measurements covering a 28-day period.
更多查看译文
关键词
Atmospheric modeling,Time series analysis,Attenuation,Predictive models,Numerical models,Rain,Adaptation models,Numerical weather prediction (NWP),Q-/V-band,rain attenuation,satellite communication (SatCom),time-series generators
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn