Stable Language Model Pre-training by Reducing Embedding Variability
CoRR(2024)
摘要
Stable pre-training is essential for achieving better-performing language models. However, tracking pre-training stability is impractical due to high computational costs. We study Token Embedding Variability as a simple proxy to estimate pre-training stability. We theoretically and empirically demonstrate that Multi-head Low-Rank Attention acts as a fundamental approach to reducing instability. This is supported by empirical findings on variants on GPT-2, demonstrating improved stability and lower perplexities, even at deeper layer counts.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn