Construction of Nitrogen-Rich Groups @ Zirconium-Based Metal-Organic Frameworks for Efficient Iodine Capture
SEPARATION AND PURIFICATION TECHNOLOGY(2025)
摘要
Efficient capture of radioactive iodine serves as an inevitable demand for secure utilization of nuclear energy, environmental conservation, and human health. In this contribution, a series of iodine adsorbent materials Im@UiO-66 were fabricated by encapsulating imidazole (Im) molecules into the pore of a classical zirconium-based metal-organic frameworks UiO-66, employing a simple and feasible vapor-diffusion strategy. Compared with original UiO-66, the resulting composites achieved a significant enhancement in iodine capture performance. Particularly, Im@UiO-66-3 demonstrated outstanding iodine adsorption performance with capacities of 4.66 g g(-1) for vapor and 915 mg g(-1) for solution, which were 3.5 and 9.2 times of the original UiO-66, respectively. Moreover, the introduction of nitrogen through ligand encapsulation provided additional sites for iodine immobilization. The primary mechanism underlying this remarkable performance was identified as charge transfer between iodine and imidazole (Im) molecules. The research offers valuable insights for the design of high-efficiency iodine adsorbents.
更多查看译文
关键词
Zirconium-based metal-organic frameworks,Encapsulation,Imidazole,Iodine capture,Charge transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn