Genomic Investigation of Innate Sensing Pathways in the Tumor Microenvironment
BMC Cancer(2024)
摘要
The innate immune system is the first responder to infectious agents, cellular debris, and cancerous growths. This system plays critical roles in the antitumor immune responses by boosting and priming T cell-mediated cytotoxicity but is understudied due to the complexity and redundancy of its various downstream signaling cascades. We utilized a mathematical tool to holistically quantify innate immune signaling cascades and immunophenotype over 8,000 tumors from The Cancer Genome Atlas (TCGA). We found that innate immune activation was predictive of patient mortality in a subset of cancers. Further analysis identified PHF genes as transcripts that were associated with genomic stability and innate activation. Knockdown of PHF gene transcripts in vitro led to an increase in cell death and IFNB1 expression in a cGAS-dependent manner, validating PHF genes as potential anti-tumor targets. We also found an association between innate immune activation and both tumor immunogenicity and intratumor microbes, which highlights the versatility of this model. In conclusion, interrogating activation of innate immune signaling cascades demonstrated the importance of studying innate signaling in cancer and broadened the search for new therapeutic adjuvants. 1. The custom ssGSEA algorithm presented in this article is an effective tool for estimating innate immune activation 2. This algorithm highlighted a new target to increase cGAS signaling in cancer cell lines. 3. In colorectal cancer, innate immunity was associated with tumor immunogenicity. 4. Innate immunity demonstrated weak associations with intratumor microbial abundance.
更多查看译文
关键词
TCGA,Innate immunity,CGAS-STING,Tumor microenvironment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn