High-Precision Automated Soybean Phenotypic Feature Extraction Based on Deep Learning and Computer Vision
PLANTS-BASEL(2024)
摘要
The automated collection of plant phenotypic information has become a trend in breeding and smart agriculture. Four YOLOv8-based models were used to segment mature soybean plants placed in a simple background in a laboratory environment, identify pods, distinguish the number of soybeans in each pod, and obtain soybean phenotypes. The YOLOv8-Repvit model yielded the most optimal recognition results, with an R2 coefficient value of 0.96 for both pods and beans, and the RMSE values were 2.89 and 6.90, respectively. Moreover, a novel algorithm was devised to efficiently differentiate between the main stem and branches of soybean plants, called the midpoint coordinate algorithm (MCA). This was accomplished by linking the white pixels representing the stems in each column of the binary image to draw curves that represent the plant structure. The proposed method reduces computational time and spatial complexity in comparison to the A* algorithm, thereby providing an efficient and accurate approach for measuring the phenotypic characteristics of soybean plants. This research lays a technical foundation for obtaining the phenotypic data of densely overlapped and partitioned mature soybean plants under field conditions at harvest.
更多查看译文
关键词
phenotype acquisition,soybean phenotypes,instance segmentation,smart agriculture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn