Feasibility Study on the Micro-Forming of Novel Metal Foil Arrays Based on Submerged Cavitating Water-Jet Impingement

ADVANCES IN MECHANICAL ENGINEERING(2024)

引用 0|浏览0
摘要
With the increasing demand for metal foil parts with micro-array structures in micro-electromechanical systems (MEMS), it is urgent to explore a novel array micro-forming technology with high efficiency, low cost, and high flexibility. The cavitation water jet uses the high-energy shock wave generated by the collapse of the cavitation bubble group as the loading force. It has the characteristics of large range of action, uniform pressure distribution, and can realize large-area array micro-forming processing. To verify the feasibility of cavitating water jet array micro-forming, this paper performs cavitating water jet array micro-forming on 304 stainless steel foil with a thickness of 80 μm, and analyzes the variation of cavitation bubbles collapse impact zone with target distance. The effects of target distance and impact time on the forming quality of metal foil array micro-holes were studied from the aspects of forming depth, surface roughness, and thickness thinning rate. The results show that the forming depth and uniformity of the array micro-holes located in the cavitation collapse area increase with time. However, with the increase of target distance, the forming depth increases first and then decreases. When the target distance is L = 120 mm, the forming depth reaches the maximum. The surface roughness ( Ra) of the array micro hole is Ra = 1.54 μm. The thickness thinning rate of the micro-forming parts is between 2% and 10%, and the maximum thickness thinning rate in the die fillet area is 13.5%. This paper provides a novel processing method for manufacturing metal foil parts with micro array structure.
更多
查看译文
关键词
Cavitating water-jet,cavitation collapse,impact,metal foil,micro-array forming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn