A Fully Connected Network (FCN) Trained on a Custom Library of Raman Spectra for Simultaneous Identification and Quantification of Components in Multi-Component Mixtures
COATINGS(2024)
摘要
Raman spectroscopy provides detailed information about the molecular composition of a sample. The classical identification of components in a multi-component sample typically involves comparing the preprocessed spectrum with a known reference stored in a database using various spectral matching or machine-learning techniques or relies on universal models based on a two-step analysis including first, the component identification, and then the decomposition of the mixed signal. However, although large databases and universal models cover a wide range of target materials, they may be not optimized to the variability required in a specific application. In this study, we propose a single-step method using deep learning (DL) modeling to decompose a simulated mixture of real measurements of Raman scattering into relevant individual components regardless of noise, baseline and the number of components involved and quantify their ratios. We hypothesize that training a custom DL model for applications with a fixed set of expected components may yield better results than applying a universal quantification model. To test this hypothesis, we simulated 12,000 Raman spectra by assigning random ratios to each component spectrum within a library containing 13 measured spectra of organic solvent samples. One of the DL methods, a fully connected network (FCN), was designed to work on the raw spectra directly and output the contribution of each component of the library to the input spectrum in form of a component ratio. The developed model was evaluated on 3600 testing spectra, which were simulated similarly to the training dataset. The average component identification accuracy of the FCN was 99.7%, which was significantly higher than that of the universal custom trained DeepRaman model, which was 83.1%. The average mean absolute error for component ratio quantification was 0.000562, over one order of magnitude smaller than that of a well-established non-negative elastic net (NN-EN), which was 0.00677. The predicted non-zero ratio values were further used for component identification. Under the assumption that the components of a mixture are from a fixed library, the proposed method preprocesses and decomposes the raw data in a single step, quantifying every component in a multicomponent mixture, accurately. Notably, the single-step FCN approach has not been implemented in the previously reported DL studies.
更多查看译文
关键词
Raman spectrum,fully connected network,spectrum simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn