Real-world Application of a 3D Deep Learning Model for Detecting and Localizing Cerebral Microbleeds
Acta Neurochirurgica(2024)
摘要
Detection and localization of cerebral microbleeds (CMBs) is crucial for disease diagnosis and treatment planning. However, CMB detection is labor-intensive, time-consuming, and challenging owing to its visual similarity to mimics. This study aimed to validate the performance of a three-dimensional (3D) deep learning model that not only detects CMBs but also identifies their anatomic location in real-world settings. A total of 21 patients with 116 CMBs and 12 without CMBs were visited in the neurosurgery outpatient department between January 2023 and October 2023. Three readers, including a board-certified neuroradiologist (reader 1), a resident in radiology (reader 2), and a neurosurgeon (reader 3) independently reviewed SWIs of 33 patients to detect CMBs and categorized their locations into lobar, deep, and infratentorial regions without any AI assistance. After a one-month washout period, the same datasets were redistributed randomly, and readers reviewed them again with the assistance of the 3D deep learning model. A comparison of the diagnostic performance between readers with and without AI assistance was performed. All readers with an AI assistant (reader 1:0.991 [0.930–0.999], reader 2:0.922 [0.881–0.905], and reader 3:0.966 [0.928–0.984]) tended to have higher sensitivity per lesion than readers only (reader 1:0.905 [0.849–0.942], reader 2:0.621 [0.541–0.694], and reader 3:0.871 [0.759–0.935], p = 0.132, 0.017, and 0.227, respectively). In particular, radiology residents (reader 2) showed a statistically significant increase in sensitivity per lesion when using AI. There was no statistically significant difference in the number of FPs per patient for all readers with AI assistant (reader 1: 0.394 [0.152–1.021], reader 2: 0.727 [0.334–1.582], reader 3: 0.182 [0.077–0.429]) and reader only (reader 1: 0.364 [0.159–0.831], reader 2: 0.576 [0.240–1.382], reader 3: 0.121 [0.038–0.383], p = 0.853, 0.251, and 0.157, respectively). Our model accurately categorized the anatomical location of all CMBs. Our model demonstrated promising potential for the detection and anatomical localization of CMBs, although further research with a larger and more diverse population is necessary to establish clinical utility in real-world settings.
更多查看译文
关键词
Deep learning,Cerebral microbleeds,Artificial intelligence,Detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn