In-memory Search with Learning to Hash Based on Resistive Memory for Recommendation Acceleration
npj Unconventional Computing(2024)
摘要
Similarity search is essential in current artificial intelligence applications and widely utilized in various fields, such as recommender systems. However, the exponential growth of data poses significant challenges in search time and energy consumption on traditional digital hardware. Here, we propose a software-hardware co-optimization to address these challenges. On the software side, we employ a learning-to-hash method for vector encoding and achieve an approximate nearest neighbor search by calculating Hamming distance, thereby reducing computational complexity. On the hardware side, we leverage the resistance random-access memory crossbar array to implement the hash encoding process and the content-addressable memory with an in-memory computing paradigm to lower the energy consumption during searches. Simulations on the MovieLens dataset demonstrate that the implementation achieves comparable accuracy to software and reduces energy consumption by 30-fold compared to traditional digital systems. These results provide insight into the development of energy-efficient in-memory search systems for edge computing.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn