Maize Yield Prediction with Trait-Missing Data Via Bipartite Graph Neural Network
FRONTIERS IN PLANT SCIENCE(2024)
摘要
The timely and accurate prediction of maize (Zea mays L.) yields prior to harvest is critical for food security and agricultural policy development. Currently, many researchers are using machine learning and deep learning to predict maize yields in specific regions with high accuracy. However, existing methods typically have two limitations. One is that they ignore the extensive correlation in maize planting data, such as the association of maize yields between adjacent planting locations and the combined effect of meteorological features and maize traits on maize yields. The other issue is that the performance of existing models may suffer significantly when some data in maize planting records is missing, or the samples are unbalanced. Therefore, this paper proposes an end-to-end bipartite graph neural network-based model for trait data imputation and yield prediction. The maize planting data is initially converted to a bipartite graph data structure. Then, a yield prediction model based on a bipartite graph neural network is developed to impute missing trait data and predict maize yield. This model can mine correlations between different samples of data, correlations between different meteorological features and traits, and correlations between different traits. Finally, to address the issue of unbalanced sample size at each planting location, we propose a loss function based on the gradient balancing mechanism that effectively reduces the impact of data imbalance on the prediction model. When compared to other data imputation and prediction models, our method achieves the best yield prediction result even when missing data is not pre-processed.
更多查看译文
关键词
yield prediction,graph neural network,bipartite graph,data imputation,gradient harmonization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn