Study of Synchronous RF Pulsing in Dual Frequency Capacitively Coupled Plasma

PLASMA SOURCES SCIENCE & TECHNOLOGY(2024)

引用 0|浏览8
摘要
Low-pressure multi-frequency capacitively coupled plasmas (CCPs) are used for numerous etch and deposition applications in the semiconductor industry. Pulsing of the radio-frequency (RF) sources enables control of neutral and charged species in the plasma on a millisecond timescale. The synchronous (i.e. simultaneous, in-phase) pulsing of both power sources in a dual frequency CCP is examined in this article. Due to the low gas pressure, modeling has been done using the electrostatic particle-in-cell/Monte Carlo collision method. The objective of this work is to investigate the sensitivity of the plasma properties to small changes in timing during synchronous pulsing of the two RF sources. It is demonstrated that small deviations in the on and off times of the two RF sources can lead to major changes in the plasma characteristics. This high sensitivity is of concern for process repeatability but can be utilized to enable better control of the dynamics of plasma-surface interaction. In the simulations, the pulsing parameters (on and off times and ramp rates) are varied and the temporal evolution of plasma characteristics such as electron density (ne ), species current at the electrode, and electron temperature are examined. It is demonstrated that if the low-frequency (LF) source is turned off a few mu s before (or after) the high-frequency source, ne during the off-state is significantly higher (or lower) due to the frequency coupling effect. Similarly, turning on the LF source with a small delay results in a sharp increase in the plasma density when the RF sources are turned on.
更多
查看译文
关键词
PIC/MCC simulation,capacitively coupled plasmas,RF pulsing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn