Self-Supervised Anomaly Detection in the Wild: Favor Joint Embeddings Methods

CoRR(2024)

引用 0|浏览0
摘要
Accurate anomaly detection is critical in vision-based infrastructure inspection, where it helps prevent costly failures and enhances safety. Self-Supervised Learning (SSL) offers a promising approach by learning robust representations from unlabeled data. However, its application in anomaly detection remains underexplored. This paper addresses this gap by providing a comprehensive evaluation of SSL methods for real-world anomaly detection, focusing on sewer infrastructure. Using the Sewer-ML dataset, we evaluate lightweight models such as ViT-Tiny and ResNet-18 across SSL frameworks, including BYOL, Barlow Twins, SimCLR, DINO, and MAE, under varying class imbalance levels. Through 250 experiments, we rigorously assess the performance of these SSL methods to ensure a robust and comprehensive evaluation. Our findings highlight the superiority of joint-embedding methods like SimCLR and Barlow Twins over reconstruction-based approaches such as MAE, which struggle to maintain performance under class imbalance. Furthermore, we find that the SSL model choice is more critical than the backbone architecture. Additionally, we emphasize the need for better label-free assessments of SSL representations, as current methods like RankMe fail to adequately evaluate representation quality, making cross-validation without labels infeasible. Despite the remaining performance gap between SSL and supervised models, these findings highlight the potential of SSL to enhance anomaly detection, paving the way for further research in this underexplored area of SSL applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn