AttnGCG: Enhancing Jailbreaking Attacks on LLMs with Attention Manipulation

arxiv(2024)

引用 0|浏览1
摘要
This paper studies the vulnerabilities of transformer-based Large Language Models (LLMs) to jailbreaking attacks, focusing specifically on the optimization-based Greedy Coordinate Gradient (GCG) strategy. We first observe a positive correlation between the effectiveness of attacks and the internal behaviors of the models. For instance, attacks tend to be less effective when models pay more attention to system prompts designed to ensure LLM safety alignment. Building on this discovery, we introduce an enhanced method that manipulates models' attention scores to facilitate LLM jailbreaking, which we term AttnGCG. Empirically, AttnGCG shows consistent improvements in attack efficacy across diverse LLMs, achieving an average increase of 7 Llama-2 series and 10 robust attack transferability against both unseen harmful goals and black-box LLMs like GPT-3.5 and GPT-4. Moreover, we note our attention-score visualization is more interpretable, allowing us to gain better insights into how our targeted attention manipulation facilitates more effective jailbreaking. We release the code at https://github.com/UCSC-VLAA/AttnGCG-attack.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn