A Dual‐Modal Memory Organic Electrochemical Transistor Implementation for Reservoir Computing

Small Science(2025)

引用 0|浏览1
摘要
Neuromorphic computing devices offer promising solutions for next‐generation computing hardware, addressing the high throughput data processing demands of artificial intelligence applications through brain‐mimicking non‐von Neumann architecture. Herein, PEDOT:Tos/PTHF‐based organic electrochemical transistors (OECTs) with dual‐modal memory functions—both short‐term and long‐term—are demonstrated. By characterizing memory levels and relaxation times, the device has been efficiently manipulated and switched between the two modes through coupled control of pulse voltage and duration. Both short‐term and long‐term memory functions are integrated within the same device, enabling its use as artificial neurons for the reservoir unit and synapses in the readout layer to build up a reservoir computing (RC) system. The performance of the dynamic neuron and synaptic weight update are benchmarked with classification tasks on hand‐written digit images, respectively, both attaining accuracies above 90%. Furthermore, by modulating the device as both reservoir mode and synaptic mode, a full‐OECT RC system capable of distinguishing electromyography signals of hand gestures is demonstrated. These results highlight the potential of simplified, homogeneous integration of dual‐modal OECTs to form brain‐like computing hardware systems for efficient biological signal processing across a broad range of applications.
更多
查看译文
关键词
long-term memory,neuromorphic transistors,organic electrochemical transistors,reservoir computing,short-term memory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn