Active Learning Guided Discovery of High Entropy Oxides Featuring High H2-production
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2024)
摘要
High entropy oxides (HEOs) represent a class of solid solutions comprising multiple elements, offering significant scientific potential. Due to the enormous combination types of elements, the design of HEOs with desirable properties within high-dimensional composition spaces has traditionally relied heavily on knowledge and intuition. In this study, we present an active learning (AL) strategy tailored to efficiently explore the vast compositional space of HEOs. Our approach operates as a closed-loop system, iteratively cycling through "Training, Prediction, and Experiment" stages. Across multiple AL iterations, we have successfully identified four novel HEOs from a vast array of potential compositions. These newly discovered materials exhibit exceptional stability and demonstrate outstanding performance in H-2 evolution rate (251 mu mol g(cat)(-1) min(-1)) during the water-gas shift reaction, surpassing benchmarks set by established catalysts such as Pt/gamma-Al2O3 (135 mu mol g(cat)(-1) min(-1)) and Cu/ZnO/Al2O3 (81 mu mol g(cat)(-1) min(-1)). X-ray photoelectron spectroscopy and density functional theory calculations revealed a loss of elemental identity in the selected HEOs. This catalyst discovery process underscores the efficacy of Machine Learning in accelerating the identification of HEOs with unique characteristics by effectively leveraging insights from limited experimental data.
更多查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn