A Novel Biosynthetic Strategy for Ginsenoside Ro: Construction of a Metabolically Engineered Saccharomyces Cerevisiae Strain Using a Newly Identified UGAT Gene from Panax Ginseng As the Key Enzyme Gene and Optimization of Fermentation Conditions
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2024)
摘要
Ginsenoside Ro, as one of the few oleanane-type ginsenosides, is well known for its unique molecular structure and biological activities. Currently, research on the biosynthesis of ginsenoside Ro is still in its early stages. Therefore, the establishment of a new ginsenoside Ro cell factory is of great significance for the in-depth development and utilization of genes related to ginsenoside Ro synthesis, as well as for the exploration of pathways to obtain ginsenoside Ro. In this study, we cloned endogenous constitutive promoters, terminators, and other genetic elements from S. cerevisiae BY4741. These elements were then sequentially assembled with the uridine diphosphate glucuronic acid transferase gene identified in our previously study (PgUGAT252645) and several other reported key enzyme genes, to construct DNA fragments used for integration into the genome of S. cerevisiae BY4741. By sequentially transferring these DNA fragments into chemically competent cells of engineering strains and conducting screening and target product detection, we successfully constructed an engineered S. cerevisiae strain (BY-Ro) for ginsenoside Ro biosynthesis using S. cerevisiae BY4741 as the host cell. Strain BY-Ro produced 253.32 μg/L of ginsenoside Ro under optimal fermentation conditions. According to subsequent measurements and calculations, this equates to 0.033 mg/g DCW, corresponding to approximately 31% of the ginsenoside Ro content found in plant samples. This study not only included a deeper investigation into the function of PgUGAT252645 but also provides a novel engineering platform for ginsenoside Ro biosynthesis.
更多查看译文
关键词
<italic>Panax ginseng</italic>,ginsenoside,biosynthesis,UDP-glucuronosyltransferase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn