Bioinformatics Analysis Reveals SOD1 is a Prognostic Factor in Lung Adenocarcinoma
TRANSLATIONAL CANCER RESEARCH(2024)
摘要
Background: Lung cancer is a major cause of cancer-related deaths worldwide. Unfortunately, non-small cell lung cancer (NSCLC) often lacks clear clinical symptoms and molecular markers for early diagnosis, which can hinder the initiation of timely treatments. In this study, we conducted an extensive bioinformatics analysis of copper-zinc superoxide dismutase (SOD1), a molecule linked to lung adenocarcinoma (LUAD) to enhance early detection and treatment approaches for this condition. Methods: A bioinformatics analysis was conducted using a dataset from The Cancer Genome Atlas (TCGA) database. Several analytical methods, such as a differential expression analysis, a Kaplan-Meier survival construction using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and an immunoreactivity analysis of SOD1 expression in LUAD using TIMER were employed. We further validated the expression of SOD1 in LUAD through in vitro experiments using quantitative polymerase chain reaction (qPCR) and Western blot. Results: Our findings indicate that LUAD tissues exhibited significantly higher expression levels of SOD1 than healthy tissues. The univariate Cox analysis showed that the elevated level was linked to unfavorable overall survival (OS) rates. Further, the Cox regression analysis of multiple variables suggested that elevated SOD1 expression levels acted as an autonomous prognosticator for unfavorable OS. We also conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and a gene set enrichment analysis (GSEA) and observed differential pathway enrichment among patients with high SOD1 expression. In addition, a correlation between SOD1 and immune cell infiltration was found. The in vitro experiments confirmed that SOD1 expression was upregulated in LUAD. Conclusions: SOD1 could serve as a reliable prognostic indicator in individuals diagnosed with LUAD. Our findings may prove valuable in the development of therapeutic and prognostic markers for LUAD. The potential clinical utility of SOD1 in LUAD requires further investigation.
更多查看译文
关键词
Copper-zinc superoxide dismutase (SOD1),lung adenocarcinoma (LUAD),bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn