Foliar Application of Carbon Dots Enhances Nitrogen Uptake and Assimilation Through CEPD1-dependent Signaling in Plants

PLANT PHYSIOLOGY AND BIOCHEMISTRY(2024)

引用 0|浏览5
摘要
The use of nitrogen (N) fertilizers increases crop yield, but the accumulation of residual N in agricultural soils poses significant environmental risks. Improving the N use efficiency (NUE) of crops can help reduce N pollution. While nanomaterials have been shown to enhance crop agronomic traits, more research is needed to clarify the regulatory mechanisms involved. In this study, foliar spraying of carbon dots (CDs, 1 mg mL-1) derived from Salvia miltiorrhiza increased the activity of plasma membrane H+-ATPase in Arabidopsis thaliana roots, promoting the uptake, transport, and assimilation of NO3-and NH4+. The upregulation of N metabolism-related genes, such as AtAMTs and AtNRTs, was also observed in A. thaliana roots. Transcriptome analysis suggested that this regulatory effect is mediated by the shoot-to-root mobile polypeptide CEPD1 (C-terminally encoded peptide DOWNSTREAM 1) signaling pathway. Additionally, foliar application of CDs increased the NUE of sweetpotato ( Ipomoea batatas (L.) Lam.) from 2.5% to 8.1%. The upregulation of genes such as CEPD1 in leaves was observed following CDs application under different N conditions. Finally, foliar spraying of CDs significantly increased field yield and enhanced tolerance to low N stress in sweetpotato. Overall, this study demonstrated that foliar application of CDs improved NUE in plants through CEPD1-dependent signaling.
更多
查看译文
关键词
Carbon dots,CEPD1,Arabidopsis thaliana,Sweetpotato,NUE
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn