A Hybrid PSO-WO Algorithm for Identification of Irregular Inner Wall Defects of a Body in a Thermal Environment

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS(2024)

引用 0|浏览2
摘要
Accurate knowledge of the inner wall defect shape of industrial thermal equipment (ITE) plays a crucial role in safety inspections. However, direct observation and measurement are challenging due to the high-temperature environment within ITE. To address this issue, the identification of irregular inner wall defect shape based inverse technology is studied in this work. A novel particle swarm optimization (PSO) coupled with the whale optimization (WO) algorithm (HPWA) is developed as solver for inverse problems to identify the inner wall defect irregular shape. This hybrid approach enhanced the late-stage convergence efficiency of WO while avoiding the local optima issue commonly faced by PSO. The radial integral boundary element method (RIBEM) is used for solving the transient heat transfer problem and obtain transient temperature data at measurement points for inverse problem simulations. It was chosen for its capability to effectively handle complex boundary shapes by discretizing only the domain boundaries. Additionally, the effect of the distance between outer and inner boundaries and measurement duration on the inverse results are thoroughly analyzed. Results show that the PSO-WO algorithm is robust to measurement errors and becomes more accurate with measurement points closer to the actual inner boundary position. Extending the measurement time has little effect on inversion results when the measurement period is long enough.
更多
查看译文
关键词
Shape identification of inner wall defects,Hybrid PSO-WO algorithm,Radial integral boundary element method,Inversed heat conduction problem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn