Micro-homogeneity of Lateral Energy Landscapes Governs the Performance in Perovskite Solar Cells

NATURE COMMUNICATIONS(2024)

引用 0|浏览2
摘要
Suppression of energy disorders in the vertical direction of a photovoltaic device, along which charge carriers are forced to travel, has been extensively studied to reduce unproductive charge recombination and thus achieve high-efficiency perovskite solar cells. In contrast, energy disorders in the lateral direction of the junction for large-area modules are largely overlooked. Herein, we show that the micro-inhomogeneity characteristics in the surface lateral energetics of formamidinium (FA)-based perovskite films also significantly influence the device performance, particularly with accounting for the stability and scale-up aspects of the devices. By using organic amidinium passivators, instead of the most commonly used organic ammonium ones, the micro-inhomogeneity in the lateral energy landscapes can be suppressed, greatly improving device stability and efficiency of FA-based single-junction perovskite solar cells. The energy disorders in the lateral direction of the junction in large-area photovoltaic modules are largely overlooked. Here, authors employ organic amidinium passivators to suppress the micro-inhomogeneity in the lateral energy landscapes and achieve high performance stable perovskite solar cells.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn