Ailanthone Targets the KMT2A-MEN1 Complex to Suppress Lung Metastasis of Osteosarcoma
PHYTOMEDICINE(2025)
摘要
Background Lung metastasis is the leading cause of death in patients with osteosarcoma (OS), and new drugs are urgently needed. Epigenetic reprogramming is a recently proposed hallmark of malignancy; therefore, targeting epigenetic enzymes might provide a novel therapeutic strategy for OS lung metastasis. We recently reported that ailanthone (AIL), a natural product isolated from the Chinese medicinal plant Ailanthus altissima, inhibits OS cell growth and induces substantial metabolic changes; however, its direct targets remain unclear. Purpose To identify the direct targets of AIL in OS and to explore the effects of AIL on OS lung metastasis in vivo. Study design Direct target proteins of AIL and downstream signaling pathways were identified in Saos-2 and U-2OS OS cells. The in vivo effects of AIL on OS lung metastasis were investigated using a mouse model. Methods A novel surface plasmon resonance-high-performance liquid chromatography-mass spectrometry (SPR-HPLC-MS) assay was used to determine direct targets of AIL in OS. A cellular thermal shift assay, molecular docking analysis, enzyme activity assay, qRT-PCR, western blotting, chromatin immunoprecipitation assay, and reverse tests were performed to confirm the target and downstream pathway of AIL. A tumor xenograft model was used to verify the efficacy and mechanisms in vivo. Results Histone-lysine N-methyltransferase 2A (KMT2A) together with its scaffold protein menin (MEN1) were identified as direct target proteins of AIL in OS. AIL induced the autophagic degradation of the KMT2A-MEN1 complex. Moreover, AIL inhibited intracellular H3K4 methyltransferase activity and epigenetically inhibited the transcription of genes in the serine biosynthetic pathway (SSP). Furthermore, AIL suppressed OS lung metastasis and downregulated KMT2A, MEN1, and SSP in mouse models. Conclusion This work showed that AIL targets the KMT2A-MEN1 complex and inhibits SSP to suppress OS lung metastasis. Notably, AIL exhibits new mechanisms of action, distinct from those of existing anti-OS drugs. On the basis of these findings, we proposed a novel strategy to treat OS by targeting epigenetic enzymes and cancer metabolism.
更多查看译文
关键词
Ailanthone,Osteosarcoma,Metastasis,KMT2A,MEN1,PHGDH
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn