Human Observation-Inspired Universal Image Acquisition Paradigm Integrating Multi-Objective Motion Planning and Control for Robotics

IEEE-CAA JOURNAL OF AUTOMATICA SINICA(2024)

引用 0|浏览0
摘要
Image acquisition stands as a prerequisite for scrutinizing surfaces inspection in industrial high-end manufacturing. Current imaging systems often exhibit inflexibility, being confined to specific objects and encountering difficulties with diverse industrial structures lacking standardized computer-aided design (CAD) models or in instances of deformation. Inspired by the multidimensional observation of humans, our study introduces a universal image acquisition paradigm tailored for robotics, seamlessly integrating multi-objective optimization trajectory planning and control scheme to harness measured point clouds for versatile, efficient, and highly accurate image acquisition across diverse structures and scenarios. Specifically, we introduce an energy-based adaptive trajectory optimization (EBATO) method that combines deformation and deviation with dual-threshold optimization and adaptive weight adjustment to improve the smoothness and accuracy of imaging trajectory and posture. Additionally, a multi-optimization control scheme based on a meta-heuristic beetle antennal olfactory recurrent neural network (BAORNN) is proposed to track the imaging trajectory while addressing posture, obstacle avoidance, and physical constraints in industrial scenarios. Simulations, real-world experiments, and comparisons demonstrate the effectiveness and practicality of the proposed paradigm.
更多
查看译文
关键词
Industrial robotics,human observation-inspired,meta-heuristic recurrent neural network,motion planning and control,universal image acquisition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn