Environmental Sensitivity and Impact of Climate Change on Leaf-, Wood- and Root Phenology for the Overstory and Understory of Temperate Deciduous Forests

Current Forestry Reports(2024)

引用 0|浏览1
摘要
To synthesize new information regarding the environmental sensitivity and impact of climate change on leaf-, wood-, phloem- and root phenology of deciduous forests of the temperate (and boreal) zone, comprising overstory and understory, and both woody and herbaceous species. The environmental sensitivity and impact of climate change on spring leaf phenology are relatively well understood, with ongoing efforts focusing on the spatial and temporal variability in both overstory and understory. Autumn leaf phenology and cambial phenology have received increasing attention in recent years. The drivers of senescence progression are well understood (current temperature), while the drivers of the onset of senescence are still uncertain but likely relate to spring temperature, water availability and light conditions. Studies on cambial phenology of angiosperm trees have focused on the variability across populations and years, while studies on phloem remain scarce and synthesis studies are unavailable. For fine root phenology, asynchronicity with leaf phenology and high variability among species have been demonstrated, but large uncertainty remains regarding the drivers of the onset and cessation of their growth. Studies on woody and herbaceous understory highlight the importance of microclimate differences within the stand. Future phenology research should focus on (i) onset of leaf senescence, (ii) fine roots, (iii) the relationships between overstory and understory species not only regarding leaves, but also wood and fine roots, (iv) variability across multiples scales (e.g. individuals, stands), and (v) interannual legacy effects and connections among phenophases of different organs and forest compartments.
更多
查看译文
关键词
Temperate forests,Angiosperm trees,Above- and belowground phenology,Spring and autumn phenophases,Canopy development,xylem and phloem formation,Shrubs and herbs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
0
您的评分 :

暂无评分

数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn